加權(quán)數(shù)據(jù)融合方法在多聲道超聲波流量計(jì)測(cè)量中
近年來(lái), 超聲波流量測(cè)量技術(shù)得到了很大的發(fā)展, 因其具有非接觸式測(cè)量、低壓損、測(cè)量范圍寬等優(yōu)點(diǎn)[1], 已經(jīng)被廣泛地應(yīng)用于水利、電力、石油、化工、自來(lái)水及食品等行業(yè)。多聲道超聲波流量計(jì)在待測(cè)截面上布置多個(gè)換能器, 通過(guò)地測(cè)量各聲道上超聲波沿水流順向與逆向傳播的時(shí)間差, 計(jì)算出各聲道流速, 并用加權(quán)積分的方法計(jì)算出流速和流量[2]。相較于單聲道超聲波流量計(jì), 其測(cè)量準(zhǔn)確度更高。
目前多聲道超聲波流量計(jì)普遍應(yīng)用Gauss-Jacob積分法和OWICS (***佳圓斷面積分方法) 兩種方法來(lái)計(jì)算圓形管道的流體流速。但是這兩種積分方法都使用固定的權(quán)重系數(shù)來(lái)計(jì)算流體流速[3], 當(dāng)某個(gè)換能器不能正常工作或者待測(cè)流體中夾雜大量雜質(zhì)或者氣泡而導(dǎo)致測(cè)量結(jié)果存在較大誤差時(shí), 通過(guò)這兩種積分方法計(jì)算的流速同樣會(huì)存在較大的誤差。
1 多聲道超聲波流量計(jì)測(cè)量原理
時(shí)差法超聲波流量計(jì)利用一對(duì)置于待測(cè)截面兩側(cè)的超聲波換能器交替收發(fā)超聲波, 通過(guò)測(cè)量超聲波在順?biāo)骱湍嫠髦袀鞑サ臅r(shí)間差來(lái)計(jì)算管道內(nèi)流體流速[4]。
各聲道測(cè)量得出的流體軸向流速的表達(dá)式為:
式中:vi表示第i條聲路測(cè)得的流體軸向速度, Li表示第i條聲道長(zhǎng)度, α表示聲道角, t1, i和t2, i分別表示第i條聲道的順流傳播時(shí)間和逆流傳播時(shí)間, i表示聲道數(shù), 本文中取i=4。
多聲道超聲波流量計(jì)計(jì)算待測(cè)截面流量的方法為:首先計(jì)算各個(gè)聲路的換能器測(cè)量得到的平均軸向速度vi, 然后根據(jù)各聲道所占的權(quán)重系數(shù)ωi通過(guò)加權(quán)求和的方法計(jì)算管道內(nèi)流體的流速[5]。多聲道超聲波流量計(jì)計(jì)算管道橫截面流速表達(dá)式為:
式中:n表示流量計(jì)的聲道數(shù)量。
待測(cè)管道的橫截面如圖1所示, zi為聲道高度, di表示第i條聲道的寬度。在利用數(shù)值積分方法計(jì)算待測(cè)截面流量時(shí), 為了方便對(duì)不同的管道半徑進(jìn)行計(jì)算, 令聲路高度zi=tiR, ti為相對(duì)聲路高度, 可以將區(qū)間[-R, R]上的定積分轉(zhuǎn)換成在區(qū)間[-1, 1]上的定積分。
圖1 待測(cè)管道的橫截面圖 下載原圖
***常應(yīng)用的Gauss-Jacobi積分方法認(rèn)為管道內(nèi)流體呈均勻分布, 并不能體現(xiàn)出管道近壁處的流速為零的特點(diǎn)[6]。而OWICS方法考慮到了充分發(fā)展的圓管湍流的實(shí)際聲路速度的分布情況與理想的代數(shù)多項(xiàng)表達(dá)式之間存在差異的問(wèn)題, 使其積分準(zhǔn)確度比Gauss-Jacobi積分法更高。
應(yīng)用Gauss-Jacobi積分法和OWICS兩種方法計(jì)算得到的四聲道超聲波流量計(jì)各聲路的相對(duì)聲路高度ti及其權(quán)重系數(shù)ωi如表1所示[7]。
Gauss-Jacobi積分法和OWICS兩種方法計(jì)算得到的相對(duì)聲路高度ti及其權(quán)重系數(shù)ωi都是固定不變的值, 當(dāng)某個(gè)換能器不能正常工作或者待測(cè)流體中夾雜大量雜質(zhì)或者氣泡而導(dǎo)致測(cè)量結(jié)果存在較大波動(dòng)時(shí), 應(yīng)用這兩種方法計(jì)算得到了流體流速同樣會(huì)產(chǎn)生波動(dòng), 從而導(dǎo)致測(cè)量準(zhǔn)確度降低甚至不能準(zhǔn)確測(cè)量。
表1 四聲道超聲波流量計(jì)的聲路高度和權(quán)重系數(shù) 下載原表
2 多傳感數(shù)據(jù)融合方法
近年來(lái), 數(shù)據(jù)融合技術(shù)得到了迅速發(fā)展, 并在許多領(lǐng)域得到了實(shí)質(zhì)性的應(yīng)用。使用多傳感器數(shù)據(jù)融合方法能夠有效的融合從多個(gè)傳感器獲得的測(cè)量數(shù)據(jù), 對(duì)測(cè)量數(shù)據(jù)提供更穩(wěn)定、更的估計(jì)[8]。
2.1 基于MMSE的數(shù)據(jù)融合
假設(shè)系統(tǒng)中有N個(gè)傳感器來(lái)觀察一個(gè)未知量Y, 不同傳感器的測(cè)量值用{Yj} (j=0, 1, 2, …, N) 表示。
假設(shè)不同測(cè)量序列之間是無(wú)偏且相互獨(dú)立的, 那么觀測(cè)Y可以由LMS (***小均方差估計(jì)) 得到[9]:
式中:Wj滿足公式:
方差估計(jì)可以表示為:
式中:σj (j=0, 1…N) 表示第j個(gè)傳感器測(cè)量序列的方差, 在式 (4) 的約束條件下, 對(duì)式 (5) 中的噪聲方差求***小值, 便可以求得***優(yōu)的權(quán)值, 表示為[10]:
該方法也被稱為***優(yōu)加權(quán)的數(shù)據(jù)融合方法, 只要確定了σj (j=0, 1…N) 的值, 便可以求得數(shù)據(jù)融合過(guò)程中的***優(yōu)權(quán)重系數(shù)。但是該方法適用于多個(gè)傳感器對(duì)同一未知量的測(cè)量, 而在多聲道超聲波流量計(jì)的流速測(cè)量中, 由于各聲道換能器測(cè)量的數(shù)據(jù)并不是同一個(gè)流速數(shù)據(jù), 所以該方法不能直接應(yīng)用于多聲道超聲波流量計(jì)的數(shù)據(jù)融合中。
2.2 改進(jìn)后的***優(yōu)加權(quán)數(shù)據(jù)融合方法
假設(shè)多聲道超聲波流量計(jì)的各聲道測(cè)量得到的流速值為vi, 并且測(cè)量值中包含相應(yīng)的測(cè)量噪聲ni, 則多聲道超聲波流量計(jì)的流速積分計(jì)算公式為:
令表示流過(guò)管道橫截面的實(shí)際流速, 則相對(duì)于真實(shí)流速的估計(jì)流速的均方誤差可以表示為:
式中:E[X]表示數(shù)學(xué)期望。根據(jù)***小均方差估計(jì)理論, 當(dāng)式 (8) 所示的均方誤差取***小值時(shí), 式 (7) 中的權(quán)重系數(shù)為***優(yōu)權(quán)重系數(shù)值。分別計(jì)算式 (8) 中均方誤差e對(duì)權(quán)重系數(shù)w1~w4的導(dǎo)數(shù), 并令導(dǎo)數(shù)公式等于0, 便可以得到下列方程組:
式中:σi2=E[ni2], 解方程組 (9) 可以得到各聲道超聲波流量計(jì)的***優(yōu)權(quán)重系數(shù), 表達(dá)式為[11]:
首先應(yīng)用超聲波流量計(jì)對(duì)于速度為的流體進(jìn)行n次測(cè)量, 每個(gè)換能器的測(cè)量值為{vim} (m=0, 1, 2, …, n) , 求取每個(gè)換能器n次測(cè)量值的方差σi (i=1, 2, 3, 4) , 然后代入式 (10) 便可以求出均方誤差取***小值時(shí)的***優(yōu)權(quán)重系數(shù)。
應(yīng)用式 (10) 進(jìn)行***優(yōu)權(quán)重系數(shù)計(jì)算時(shí), 為使其能及時(shí)、準(zhǔn)確的反映出外界環(huán)境干擾等因素對(duì)流速測(cè)量結(jié)果的影響, 需要解決權(quán)重系數(shù)動(dòng)態(tài)修正的問(wèn)題。
假設(shè)第i個(gè)換能器測(cè)量的數(shù)據(jù)為{vim} (m=0, 1…n) , 那么n個(gè)測(cè)量值的平均值為:
方差為:
如果第i個(gè)換能器的第n+1次實(shí)時(shí)測(cè)量數(shù)據(jù)為vi (n+1) , 那么便可以通過(guò)前面的n個(gè)測(cè)量值的平均值獲得 (n+1) 個(gè)測(cè)量數(shù)據(jù)的平均值, 計(jì)算公式為:
(n+1) 個(gè)測(cè)量數(shù)據(jù)的方差為:
將式 (14) 進(jìn)行化簡(jiǎn), 化簡(jiǎn)后的 (n+1) 個(gè)測(cè)量數(shù)據(jù)的方差為:
根據(jù)上述公式便可以通過(guò)第i個(gè)換能器測(cè)量的前n個(gè)數(shù)據(jù)的方差來(lái)計(jì)算第n+1次測(cè)量數(shù)據(jù)的方差。每當(dāng)有新一個(gè)數(shù)據(jù)測(cè)量完成后便進(jìn)行一次方差以及權(quán)重系數(shù)的計(jì)算, 使得每次測(cè)量后的權(quán)重系數(shù)能進(jìn)行自動(dòng)修正。對(duì)多個(gè)傳感器的數(shù)據(jù)依據(jù)權(quán)值***優(yōu)分配原則進(jìn)行自適應(yīng)加權(quán)融合, 便可以層層降低誤差[12]。
2.3 數(shù)據(jù)融合算法的實(shí)現(xiàn)流程
根據(jù)以上分析, 算法的實(shí)現(xiàn)流程為:從第i個(gè)換能器測(cè)量得到的第2個(gè)流速數(shù)據(jù)開(kāi)始計(jì)算前兩個(gè)數(shù)據(jù)的平均值和方差, 根據(jù)式 (10) 計(jì)算各聲路換能器的權(quán)重系數(shù), 應(yīng)用計(jì)算得到的權(quán)重系數(shù)進(jìn)行流速計(jì)算, 當(dāng)?shù)?個(gè)數(shù)據(jù)測(cè)量完成后, 根據(jù)式 (15) 計(jì)算前3個(gè)數(shù)據(jù)的平均值和方差, 然后重新計(jì)算權(quán)重系數(shù)并計(jì)算流速, 依次類推, 直到第n個(gè)數(shù)據(jù)測(cè)量并完成計(jì)算。改進(jìn)后的***優(yōu)加權(quán)的數(shù)據(jù)融合方法的計(jì)算流程圖如圖2所示。
圖2 ***優(yōu)加權(quán)數(shù)據(jù)融合方法的計(jì)算流程圖 下載原圖
3 實(shí)驗(yàn)結(jié)果分析
實(shí)際應(yīng)用中, 超聲波流量計(jì)的換能器發(fā)射信號(hào)的觸發(fā)脈沖的時(shí)序如圖3所示:正程或逆程相鄰兩次發(fā)射的間隔時(shí)間為2 ms, 相鄰正逆程發(fā)射之間的間隔時(shí)間為1 ms[13]。
圖3 超聲波換能器信號(hào)發(fā)射的脈沖時(shí)序圖 下載原圖
超聲波流量計(jì)顯示流量的更新頻率為0.5 s, 即每隔0.5 s超聲波流量計(jì)的顯示流量會(huì)更新一次。0.5 s時(shí)間內(nèi)超聲波流量計(jì)會(huì)發(fā)射和接收超聲波信號(hào)250次, 每個(gè)聲道可以計(jì)算得到250個(gè)流速值。實(shí)驗(yàn)中選取四聲道超聲波流量計(jì)對(duì)口徑為100 mm的長(zhǎng)直管段進(jìn)行流速測(cè)量, 各聲道按照?qǐng)D1所示進(jìn)行布置, 聲道高度為Gauss-Jacobi積分法計(jì)算得到的聲道高度, 從上到下依次為1-4聲道, 聲道角度α為45°, 流體為液態(tài)水, 管道入口流體流速為5 m/s。計(jì)算得到一個(gè)顯示周期內(nèi)各聲道250次測(cè)量的流速值如圖4所示。
圖4 一個(gè)顯示周期內(nèi)各聲道250次測(cè)量的流速值 下載原圖
將測(cè)量計(jì)算得到的一個(gè)顯示周期內(nèi)各聲道250次測(cè)量的流速值按照?qǐng)D2所示的改進(jìn)后的***優(yōu)加權(quán)的數(shù)據(jù)融合方法的計(jì)算流程進(jìn)行計(jì)算, 便可以在每一次測(cè)量流速后計(jì)算各聲道的***優(yōu)權(quán)重系數(shù)。每次測(cè)量計(jì)算得到的***優(yōu)權(quán)重系數(shù)如圖5所示。
圖5 各聲道動(dòng)態(tài)變化的***優(yōu)權(quán)重系數(shù) 下載原圖
將每次測(cè)量計(jì)算得到的各聲道的***優(yōu)權(quán)重系數(shù)進(jìn)行平均計(jì)算并與Gauss-Jacobi積分法計(jì)算得到的各聲道權(quán)重系數(shù)進(jìn)行比較, 如表2所示。
表2 兩種方法計(jì)算得到的權(quán)重系數(shù)的對(duì)比 下載原表
如表2所示, 如果各聲道換能器均能正常工作, 那么應(yīng)用改進(jìn)后的***優(yōu)加權(quán)數(shù)據(jù)融合方法計(jì)算得到的***優(yōu)權(quán)重系數(shù)的平均值和常用的Gauss-Jacobi積分法計(jì)算得到的各聲道權(quán)重系數(shù)相差很小。應(yīng)用這兩種方法計(jì)算一個(gè)顯示周期內(nèi)各聲道250次測(cè)量的流速值的融合結(jié)果如圖6所示。
圖6 兩種方法計(jì)算得到的流速值的融合結(jié)果 下載原圖
如圖6所示, 當(dāng)多聲道超聲波流量計(jì)各個(gè)聲道都能正常的工作來(lái)測(cè)量流體流速時(shí), 應(yīng)用這兩種方法計(jì)算得到的管道流速值基本一致, 說(shuō)明應(yīng)用改進(jìn)后的***優(yōu)加權(quán)數(shù)據(jù)融合方法計(jì)算流體流速在正常情況下能夠?qū)崿F(xiàn)較好的數(shù)據(jù)融合效果。
而實(shí)際應(yīng)用中, 隨著超聲波流量計(jì)使用年限的增加或者流體中夾雜過(guò)量氣泡或雜質(zhì), 都可能使其存在某個(gè)換能器測(cè)量的流速值存在較大偏差。實(shí)驗(yàn)中在第2聲道測(cè)量的流速值數(shù)據(jù)上添加白噪聲, 使其測(cè)量結(jié)果產(chǎn)生較大的波動(dòng), 用來(lái)模擬單個(gè)換能器測(cè)量不準(zhǔn)的情況。第2聲道換能器測(cè)量不準(zhǔn)時(shí)的一個(gè)顯示周期內(nèi)各聲道250次測(cè)量的流速值如圖7所示。
圖7 單個(gè)聲道測(cè)量不準(zhǔn)時(shí)一個(gè)顯示周期內(nèi)各聲道250次測(cè)量的流速值 下載原圖
同樣按照?qǐng)D2所示的改進(jìn)后的***優(yōu)加權(quán)的數(shù)據(jù)融合方法的計(jì)算流程進(jìn)行計(jì)算, 便可以在每一次測(cè)量流速后計(jì)算各聲道的***優(yōu)權(quán)重系數(shù), 如圖8所示。
圖8 各聲道動(dòng)態(tài)變化的***優(yōu)權(quán)重系數(shù) 下載原圖
將每次測(cè)量計(jì)算得到的各聲道的***優(yōu)權(quán)重系數(shù)進(jìn)行平均計(jì)算并與Gauss-Jacobi積分法計(jì)算得到的各聲道權(quán)重系數(shù)進(jìn)行比較, 如表3所示。
表3 兩種方法計(jì)算得到的權(quán)重系數(shù)的對(duì)比 下載原表
如表3所示:如果第2個(gè)聲道換能器不能正常工作, 此時(shí)各聲道計(jì)算得到的權(quán)重系數(shù)會(huì)發(fā)生明顯的變化, 測(cè)量不準(zhǔn)確的第2聲道所占比重大大減小, 而其他聲道流速的權(quán)重系數(shù)增大, 說(shuō)明應(yīng)用改進(jìn)后的***優(yōu)加權(quán)數(shù)據(jù)融合方法進(jìn)行流速計(jì)算時(shí)可以自動(dòng)的減小不能正常工作的換能器測(cè)量數(shù)據(jù)在計(jì)算管道截面的流速時(shí)的比重, 減小測(cè)量誤差對(duì)***終流速數(shù)據(jù)融合的影響。
在第2聲道換能器測(cè)量不準(zhǔn)的情況下, 應(yīng)用這兩種方法計(jì)算一個(gè)顯示周期內(nèi)各聲道250次測(cè)量的流速值的融合結(jié)果如圖9所示。
圖9 兩種方法計(jì)算得到的流速值的融合結(jié)果 下載原圖
如圖9所示, 當(dāng)多聲道超聲波流量計(jì)第2個(gè)聲道不能正常的工作時(shí), 應(yīng)用Gauss-Jacobi積分法計(jì)算得到的管道流速會(huì)受到測(cè)量誤差的影響而使得***終的計(jì)算結(jié)果同樣會(huì)存在較大波動(dòng), 而應(yīng)用改進(jìn)后的***優(yōu)加權(quán)數(shù)據(jù)融合方法計(jì)算得到的流體流速明顯要比Gauss-Jacobi積分法更加穩(wěn)定, 說(shuō)明應(yīng)用改進(jìn)后的***優(yōu)加權(quán)數(shù)據(jù)融合方法進(jìn)行流體流速計(jì)算時(shí), 通過(guò)每次測(cè)量數(shù)據(jù)后對(duì)各聲道權(quán)重系數(shù)進(jìn)行自動(dòng)修正, 可以減小測(cè)量誤差對(duì)流速測(cè)量結(jié)果影響, 使得流速計(jì)算結(jié)果更加準(zhǔn)確。
4 結(jié)論
當(dāng)多聲道超聲波流量計(jì)的某個(gè)換能器在測(cè)量流體流速時(shí)不能正常工作而導(dǎo)致測(cè)量結(jié)果存在較大誤差時(shí), 通過(guò)對(duì)基于MSE的數(shù)據(jù)融合算法進(jìn)行改進(jìn), 使其適用于超聲波流量計(jì)多個(gè)聲路測(cè)量的流速值的融合計(jì)算, 在一個(gè)顯示周期內(nèi)每進(jìn)行一次流速測(cè)量, 便通過(guò)改進(jìn)后的***優(yōu)加權(quán)數(shù)據(jù)融合方法自適應(yīng)的計(jì)算***優(yōu)權(quán)重系數(shù), 從而減小測(cè)量誤差對(duì)流速計(jì)算結(jié)果的影響。
通過(guò)實(shí)驗(yàn)處理一個(gè)周期內(nèi)正常測(cè)量的流速數(shù)據(jù)和單個(gè)換能器非正常工作時(shí)的流速數(shù)據(jù), 得出當(dāng)流量計(jì)各聲道均能正常工作時(shí), 應(yīng)用改進(jìn)后的***優(yōu)加權(quán)數(shù)據(jù)融合方法計(jì)算得到的管道流速值與GaussJacobi積分法計(jì)算得到的流速值基本一致, 而當(dāng)流量計(jì)單個(gè)聲道不能正常工作時(shí), 應(yīng)用改進(jìn)后的***優(yōu)加權(quán)數(shù)據(jù)融合方法計(jì)算得到的管道流速值較GaussJacobi積分法計(jì)算得到的流速值更加穩(wěn)定, 說(shuō)明應(yīng)用改進(jìn)后的***優(yōu)加權(quán)數(shù)據(jù)融合方法進(jìn)行管道流速值計(jì)算可以減小測(cè)量誤差對(duì)流速測(cè)量結(jié)果影響, 使得流速計(jì)算結(jié)果更加準(zhǔn)確。